- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0004000000000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Liu, Ying (2)
-
Bentley, Elizabeth Serena (1)
-
Du, Pengli (1)
-
Farrell, Brennen (1)
-
Galvin, James E (1)
-
Ghoraani, Behnaz (1)
-
Hsu, Ming Kai (1)
-
Ling, Nam (1)
-
Liu, Lingzhi (1)
-
Medley, Michael J. (1)
-
Pados, Dimitris A. (1)
-
Ren, Yongxiong (1)
-
Seifallahi, Mahmoud (1)
-
Shen, Tianma (1)
-
Sklivanitis, George (1)
-
Tountas, Konstantinos (1)
-
Viloria, Jose A. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
Markopoulos, Panos P. (3)
-
Ouyang, Bing (3)
-
Ahmad, Fauzia (1)
-
Markopoulos, Panos P (1)
-
Papalexakis, Vagelis (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Sklivanitis, George; Viloria, Jose A.; Tountas, Konstantinos; Pados, Dimitris A.; Bentley, Elizabeth Serena; Medley, Michael J. (, SPIE Defense + Commercial Sensing)Markopoulos, Panos P.; Ouyang, Bing (Ed.)We consider the problem of unsupervised (blind) evaluation and assessment of the quality of data used for deep neural network (DNN) RF signal classification. When neural networks train on noisy or mislabeled data, they often (over-)fit to the noise measurements and faulty labels, which leads to significant performance degradation. Also, DNNs are vulnerable to adversarial attacks, which can considerably reduce their classification performance, with extremely small perturbations of their input. In this paper, we consider a new method based on L1-norm principal-component analysis (PCA) to improve the quality of labeled wireless data sets that are used for training a convolutional neural network (CNN), and a deep residual network (ResNet) for RF signal classification. Experiments with data generated for eleven classes of digital and analog modulated signals show that L1-norm tensor conformity curation of the data identifies and removes from the training data set inappropriate class instances that appear due to mislabeling and universal black-box adversarial attacks and drastically improves/restores the classification accuracy of the identified deep neural network architectures.more » « less
-
Shen, Tianma; Liu, Ying (, Proceedings of SPIE)Markopoulos, Panos P.; Ouyang, Bing; Papalexakis, Vagelis (Ed.)
-
Du, Pengli; Liu, Ying; Ling, Nam; Liu, Lingzhi; Ren, Yongxiong; Hsu, Ming Kai (, Proc. SPIE 12097, Big Data IV: Learning, Analytics, and Applications, 120970E (31 May 2022))Ahmad, Fauzia; Markopoulos, Panos P.; Ouyang, Bing (Ed.)
An official website of the United States government

Full Text Available